Core Mathematics C1 Paper L

1. Solve the inequality

$$
\begin{equation*}
4(x-2)<2 x+5 . \tag{3}
\end{equation*}
$$

2.

$$
\mathrm{f}(x)=2-x-x^{3}
$$

Show that $\mathrm{f}(x)$ is decreasing for all values of x.
3. (i) Solve the equation

$$
\begin{equation*}
y^{2}+8=9 y . \tag{2}
\end{equation*}
$$

(ii) Hence solve the equation

$$
\begin{equation*}
x^{3}+8=9 x^{\frac{3}{2}} . \tag{3}
\end{equation*}
$$

4. Given that

$$
y=\frac{x^{4}-3}{2 x^{2}}
$$

(i) find $\frac{\mathrm{d} y}{\mathrm{~d} x}$,
(ii) show that $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\frac{x^{4}-9}{x^{4}}$.
5. Find the pairs of values (x, y) which satisfy the simultaneous equations

$$
\begin{align*}
& 3 x^{2}+y^{2}=21 \\
& 5 x+y=7 \tag{7}
\end{align*}
$$

6. (i) Evaluate $\left(5 \frac{4}{9}\right)^{-\frac{1}{2}}$.
(ii) Find the value of x such that

$$
\frac{1+x}{x}=\sqrt{3}
$$

giving your answer in the form $a+b \sqrt{3}$ where a and b are rational.
7. \quad The straight line l passes through the point $P(-3,6)$ and the point $Q(1,-4)$.
(i) Find an equation for l in the form $a x+b y+c=0$, where a, b and c are integers.

The straight line m has the equation $2 x+k y+7=0$, where k is a constant.
Given that l and m are perpendicular,
(ii) find the value of k.
8. (i) Describe fully a single transformation that maps the graph of $y=\frac{1}{x}$ onto the graph of $y=\frac{3}{x}$.
(ii) Sketch the graph of $y=\frac{3}{x}$ and write down the equations of any asymptotes.
(iii) Find the values of the constant c for which the straight line $y=c-3 x$ is a tangent to the curve $y=\frac{3}{x}$.
9. The circle C has the equation

$$
x^{2}+y^{2}-12 x+8 y+16=0 .
$$

(i) Find the coordinates of the centre of C.
(ii) Find the radius of C.
(iii) Sketch C.

Given that C crosses the x-axis at the points A and B,
(iv) find the length $A B$, giving your answer in the form $k \sqrt{5}$.
10.

The diagram shows the curve $y=x^{2}-3 x+5$ and the straight line $y=2 x+1$.
The curve and line intersect at the points P and Q.
(i) Using algebra, show that P has coordinates $(1,3)$ and find the coordinates of Q.
(ii) Find an equation for the tangent to the curve at P.
(iii) Show that the tangent to the curve at Q has the equation $y=5 x-11$.
(iv) Find the coordinates of the point where the tangent to the curve at P intersects the tangent to the curve at Q.

